# **OBJECTIVES**

- 1. Physiology is concerned with how the athlete's body responds and adapts to exercise and training programs.
- 2. The importance of proper nutrition cannot be overemphasized as a determinant of athletic performance.
- To be successful as a coach, it is necessary to understand how the body functions and use this knowledge in daily coaching.

# I. ANATOMY AND PHYSIOLOGY

- A. Cells
  - 1. Transport messages.
  - 2. Carry chemicals.
  - 3. Support the body.
  - 4. Move the body.
- B. Skeleton
  - 1. Different functions.
    - a. Support.
    - b. Protection.
    - c. Movement.
- C. Muscles
  - 1. Fiber anatomy.
  - 2. Fiber types.
    - a. Fast twitch.
    - b. Slow twitch.
- D. Muscles' Function
  - 1. Dynamic contractions.
    - a. Concentric contractions.
    - b. Eccentric contractions.
  - 2. Static contractions.
    - a. Isometric contractions.
    - b. Joint stabilizer.
- E. Nervous System
  - 1. Nerve impulses cause muscular contractions (motor).
  - 2. Sensory feedback.

# II. ENERGY SYSTEMS

- A. The Aerobic-Anaerobic Split
  - 1. Percentage of aerobic and anaerobic energy in an activity.
- B. Aerobic Energy
  - 1. With oxygen.
  - 2. Energy in endurance activities.
- C. Anaerobic Alactic Energy
  - 1. CP system.
  - 2. 1st 10 seconds.
- D. Anaerobic Lactic Energy
  - 1. Glycolysis.

- 2. 10 seconds to 1 minute.
- E. The Cardio-respiratory System
  - 1. Lungs.
    - a. Getting oxygen into blood.
  - 2. The heart.
    - a. Circulating oxygenated blood.
  - 3. Blood vessels and blood.
    - a. Carrying oxygen, carbon dioxide, and waste materials.
- F. Individual Differences
  - 1. Body types.
    - a. Endomorph.
    - b. Mesomorph.
    - c. Ectomorph.
- G. Body Composition
  - 1. Lean body weight.
  - 2. Excess fat.

## III. GROWTH AND DEVELOPMENT

- A. Physical Development
  - 1. Patterns of growth.
    - a. Changes in size.
    - b. Changes in proportion.
  - 2. Growth spurt.
  - 3. Sex differences.
    - a. Sexual development and puberty.
  - 4. Early and late developers.
    - a. Peak times for growth.
- B. Structure of the Body
  - 1. Bone growth.
- C. Children and Exercise
  - 1. Implications for the coach.
- D. Developing Control of Movement
  - 1. Maturation.
  - 2. Experience.
    - a. Prior skills.
  - 3. Teaching.
  - 4. Difficulty of the task.
- E. Children's Basic Movements
  - 1. Stages of learning.
    - a. The thinking stage.
    - b. The learning stage.
    - c. The skilled stage.
  - 2. Basic capabilities.
- F. Principles for Structuring Practice
  - 1. Big versus small movements.
  - 2. Simple versus complex tasks.
  - 3. Parts versus wholes.

- 4. Implications for the coach.
- 5. Practice versus competition.
- 6. Implications for the coach.

# IV. SOCIAL DEVELOPMENT

- A. Self-Image
  - 1. How children see themselves.
  - 2. Influence of others.
    - a. Parents.
    - b. Other children.
    - c. Coach.
- B. Ability and Effort
  - 1. When mistakes happen.
  - 2. Implications for the coach.
- C. Play, Sport, and Competition
  - 1. Children play.
  - 2. Adult play.
  - 3. Understanding of competition.
  - 4. Implications for the coach.
- D. Adapting Athletics for Children
  - 1. Modifying techniques.
  - 2. Adapting equipment.
  - 3. Modifying rules.

## V. TRAINING THEORY

- A. What is "fitness"?
  - 1. Law of overload.
    - a. Training-adaptation.
    - b. Stimulus(overload)-fatigue-recovery-overcompensation.
  - 2. Law of reversibility.
    - a. Progressive overload = increased fitness.
    - b. Insufficient overload = no change in fitness.
    - c. Excessive overload = increased fatigue & decreased performance.
  - 3. Law of specificity.
    - a. Specific training results in specific response.
    - b. Exercise should be specific to athlete and event.
    - c. General training before specific.

## B. Principle of Individualization

- 1. Heredity.
  - a. Ability varies.
  - b. All can reach individual potential.
- 2. Developmental age.
  - a. Chronological age.
  - b. Maturity varies.
- 3. Training age.
  - a. Fitness varies.
  - b. Years in the sport.

- C. Principle of Variety
  - 1. Change better than rest.
  - Change type, time, environment.
- D. Principle of Active Involvement
  - 1. Full participation of athlete.
  - 2. Includes all aspects of lifestyle.

# VI. BIOMOTOR ABÎLITIES - COMPONENTS OF FITNESS

- A. Strength
  - 1. Maximum strength.
    - a. Greatest force muscle can produce.
    - b. Most important when great resistance must be overcome (strength events).
  - 2. Elastic strength.
    - a. Muscle moves quickly against resistance (power).
    - b. Most important in explosive events.
  - 3. Strength endurance.
    - a. Force production for prolonged duration.
    - b. Most important in middle distance events (duration 2-8 minutes).
  - 4. Development of strength.

#### B. Endurance

- 1. Aerobic endurance.
  - a. Sufficient oxygen to produce energy.
  - b. Developed by continuous, or interval running.
  - c. Developed before anaerobic endurance.
- 2. Anaerobic endurance.
  - a. Muscles function using stored energy.
  - b. Divided into strength and speed endurance.
    - i. Strength endurance: force in spite of increased hydrogen ion buildup.
    - ii. Speed endurance: speed in spite of increased hydrogen ion buildup.
- 3. Development of endurance.
- C. Speed
  - 1. Development of a skill so that the technique is performed at a faster rate.
    - a. Performed at maximum or near maximum rate.
    - b. Over a short distance.
    - c. Long recovery.
  - 2. Components of speed.
    - a. Reaction time.
    - b. Acceleration.
    - c. Top speed.
    - d. Speed endurance.
- D. Flexibility
  - 1. Purpose.
    - a. Increases range of motion.
    - b. May reduce injury.
  - 2. Types of stretching.
    - a. Active.
      - i. Can be done in the end position, as static, or dynamic exercise.
      - ii. Athlete controls movement.
    - b. Passive.
      - i. Performed in end position.
      - ii. Partner controls movement.

## E. Coordination

- 1. Most readily developed.
  - a. Boys 8-13 years of age.
  - b. Girls 8-11 years of age.
- 2. In the mature athlete.
  - a. Foundation for event specific skill.
  - b. Protects against over development.

# VII. DEVELOPING A TRAINING PROGRAM

#### A. Periodisation

- 1. Volume and Intensity.
- 2. Preparation period.
  - a. General.
    - i. Basic fitness.
    - ii. Introduction of technique.
  - b. Specific.
    - i. Volume, intensity increase.
  - ii. Energy system specificity.
- 3. Competition period.
  - a. Intensity high.
  - b. Volume low.
  - c. Recovery extended.
- 4. Transition period.
  - a. End of season.
  - b. Active rest.
  - c. Period of evaluation.

#### B. Planning

- 1. Long term.
  - a. 0-14 years.
    - i. General development.
    - ii. Basic skills.
    - iii. Fun.
    - iv. General competition.
  - b. 17-18 years.
    - i. Begin specific training.
    - ii. Weight training if appropriate.
    - iii. Age group competition.
  - c. 20-21 years.
    - i. Specialized training.
    - ii. Development of specific skills and techniques.
    - iii. Some senior competition.
  - d. 24-25 years.
    - i. High level training.
    - ii. Elite performance levels.
    - iii. National senior, and international competition.
- 2. Microcycle.
  - a. Loading depends on training age and fitness.
  - b. What stage of training is this cycle.
- 3. Training session.
  - a. Set overall goals.
  - b. Set specific goals.
  - c. Mix various components of training session.
  - d. Design the training session.

- i. Warm-up.
- ii. Skills unit.
- iii. Fitness unit.
- iv. Cool-down
- C. Evaluation of Session
  - 1. Promotes effective planning.
  - 2. Increases individualization.
  - 3. Promotes understanding of training effects.

## VIII. NUTRITION

- A. Overview of the Relationship of Nutrition to Performance
  - 1. Process of getting energy from food.
- B. Calories
  - 1. Measurement of energy.
- C. Energy Balance
  - 1. Intake versus expenditure.
- D. Seven Nutrients (Some Provide Calories While Others Don't)
  - 1. Protein.
    - a. Amino acids.
    - b. Protein quality.
  - 2. Carbohydrates.
    - a. Simple versus complex.
    - b. Blood glucose and stored glycogen.
  - 3. Fat.
    - a. Source of long-term energy.
    - b. Concentrated.
  - 4. Vitamins.
    - a. Fat soluble versus water soluble.
  - 5. Minerals.
    - a. Sodium, calcium, iron, and iodine.
  - 6. Water.
    - a. Proper hydration.
  - 7. Fiber.
    - a. Aiding digestion.
- E. Nutrient Balance
  - 1. Proper nutrient percentages.
  - 2. Weight control.
- F. The Balanced Diet
  - 1. Practical guidelines.
- G. The Digestive System
  - 1. Breaking down food.
  - 2. Providing fuel.
- H. Pre-Competition Nutrition